Lecturers Page Dr. Amir Kolaman

Dr. Amir Kolaman

קיבלתי תואר B.Sc. בהנדסת חשמל ומחשבים, תואר M.Sc. בהנדסה אלקטרו-אופטית, ותואר Ph.D. בהנדסת חשמל ומחשבים מאוניברסיטת בן-גוריון בנגב, באר שבע, ישראל, בשנים 2005, 2011 ו-2018, בהתאמה. פיתחתי היבטים שונים של חיישן התמונה CMOS למצלמה כמהנדס חומרה בין השנים 2005 ל-2007 במרכז VLSI, וכמפתח אלגוריתמים בין השנים 2010 ל-2012 בחברת אינטל. עבדתי בחברת Foresight Automotive כחוקר למידת מכונה בין השנים 2018 ל-2020. כיום אני חוקר ראייה ממוחשבת ומנהיג צוות בחברת אלביט מערכות. תחומי המחקר שלי כוללים מצלמות וידאו בזמן אמת שאינן תלויות בתאורה, יישום תורת היחסות בעיבוד תמונות צבע, קביעות צבע תת-מימית, שימוש בקווטרניונים בעיבוד תמונות, וגילוי אנומליות מסנסורים חזותיים.

I received B.Sc. in electric and computer engineering, M.Sc. in electro-optical engineering, and Ph.D. in electric and computer engineering from Ben-Gurion University of the Negev, Beersheba, Israel, in 2005, 2011 and 2018, respectively. I developed different aspects of the camera CMOS image sensor as a hardware engineer between 2005 and 2007 at the VLSI center, and as an algorithm developer between 2010 and 2012 at Intel. I've worked in foresight automotive as a machine learning research scientist from 2018 to 2020. I'm currently a machine vision researcher and team leader at Elbit Sytems. My research interests include real-time light invariant video cameras, application of the theory of relativity in color image processing, underwater color constancy, the use of quaternions in image processing and anomaly detection in visionary sensors.


Areas of interest and Teaching

Research

An expert in the development and implementation of smart, useful, and ground-breaking computer vision systems in a research environment with high uncertainty. Responsible for leading a team of algorithm developers and programmers while creating harmony, focus, rapid learning and accelerated implementation. Doing this for twenty years, half of them in academia and half of them in industry. I help engineers over achieve in their work by teaching them effective task, time, team and research management practices that have been tested and validated in my 20 years of experience in the industry and academia.

An expert in the development and implementation of smart, useful, and ground-breaking computer vision systems in a research environment with high uncertainty. Responsible for leading a team of algorithm developers and programmers while creating harmony, focus, rapid learning and accelerated implementation. Doing this for twenty years, half of them in academia and half of them in industry.

I help engineers over achieve in their work by teaching them effective task, time, team and research management practices that have been tested and validated in my 20 years of experience in the industry and academia.

Awards

Publications

2012

[4] Amir Kolaman and Orly Yadid Pecht, "Quaternion Structural Similarity a New Quality Index for Color Images", IEEE Transactions on Image Processing 2012

2011

[3] Seungkeun, Oh Hyondong, Kolaman Amir, White Brian, and Guterman Hugo “Educational hands-on testbed using Lego robot for learning guidance, navigation, and control “ 18th IFAC World Congress, 2011.

[2] Amir Kolaman, Amir Egozi, Hugo Guterman and B. L. Coleman, "Ralativity and Contrast Enhancement", IMAGAPP 2011

2014

[5] Amir Kolaman, Rami Hagege  and Hugo Guterman, "Light source separation from image sequences of oscillating lights",  IEEE 28-th Convention of Electrical and Electronics Engineers in Israel, 2014

2016, 2020

[8] A Kolaman, H Guterman, R Hagege, "Methods of producing video images that are independent of the background lighting" US Patent 10,630,907

[7] Amir Kolaman, Rami Hagege  and Hugo Guterman, "Light Invariant Video Camera - Making Faces Appear the Same Under any Light Conditions"2016 ICSEE International Conference on the Science of Electrical Engineering

[6] Amir Kolaman, Maxim Levov, Rami Hagege  and Hugo Guterman, " Amplitude Modulated Video Camera - Light Separation in Dynamic Scenes",  IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

LIVICNN.jpg

2018

[9] Amir Kolaman, Dan Malowany, Rami R. Hagege  and Hugo Guterman, "Light Invariant Video Imaging for Improved Performance of Convolution Neural Networks",  IEEE IEEE Transactions on Circuits and Systems for Video Technology, 2018

Presentations

Links to

https://kolaman6.wixsite.com/amir